Home > Exhibition > Content

Fermentor (Bioreactor): Design

Jul 22, 2019

Fermentor (Bioreactor): Design

Construction of Fermentors:

Industrial fermentors can be divided into two major classes, anaerobic and aerobic. Anaerobic fermentors require little special equipment except for removal of heat generated during the fermentation process, whereas aerobic fermentors require much more elaborate equipment to ensure that mixing and adequate aeration are achieved.

Since most industrial fermentation process are aerobic, the construction of a typical aerobic fermentor  is the following:

Fermentor (Bioreactor) Design Sildom

1. Cooling Jacket:

Large-scale industrial fermentors are almost always constructed of stainless steel. A fermentor is a large cylinder closed at the top and the bottom and various pipes and valves are fitted into it. The fermentor is fitted externally with a cooling jacket through which steam (for sterilization) or cooling water (for cooling) is run.

Cooling jacket is necessary because sterilization of the nutrient medium and removal of the heat generated are obligatory for successful completion of the fermentation in the fermentor. For very large fermentors, insufficient heat transfer takes place through the jacket and therefore, internal coils are provided through which either steam or cooling water is run.


2. Aeration System:

Aeration system is one of the most critical part of a fermentor. In a fermentor with a high microbial population density, there is a tremendous oxygen demand by the culture, but oxygen being poorly soluble in water hardly transfers rapidly throughout the growth medium.

It is necessary, therefore, that elaborate precautions are taken using a good aeration system to ensure proper aeration an oxygen availability throughout the culture. However, two separate aeration devices are used to ensure proper aeration in fermentor. These devices are sparger and impeller.

The sparger is typically just a series of holes in a metal ring or a nozzle through which filter-sterilized air (or oxygen-enriched air) passes into the fermentor under high pressure. The air enters the fermentor as a series of tiny bubbles from which the oxygen passes by diffusion into the liquid culture medium.

The impeller (also called agitator) is an agitating device necessary for stirring of the fermenter.

The stirring accomplishes two things: 

(i) It mixes the gas bubbles through the liquid culture medium and

(ii) It mixes the microbial cells through the liquid culture medium. In this way, the stirring ensures uniform access of microbial cells to the nutrients.

The size and position of the impeller in the fermentor depends upon the size of the fermentor. In tall fermentors, more than one impeller is needed if adequate aeration and agitation is to be obtained. Ideally, the impeller should be 1/3 of the fermentors diameter fitted above the base of the fermentor. The number of impeller may vary from size to size to the fermentor.

3. Baffles:

The baffles are normally incorporated into fermentors of all sizes to prevent a vortex and to improve aeration efficiency. They are metal strips roughly one-tenth of the fermentors diameter and attached radially to the walls.

4. Controlling Devices for Environmental Factors:

In any microbial fermentation, it is necessary not only to measure growth and product formation but also to control the process by altering environmental parameters as the process proceeds. For this purpose, various devices are used in a fermentor. Environmental factors that are frequently controlled includes temperature, oxygen concentration, pH, cells mass, levels of key nutrients, and product concentration.


Use of Computer in Fermentor:

Computer technology has produced a remarkable impact in fermentation work in recent years and the computers are used to model fermentation processes in industrial fermentors. Integration of computers into fermentation systems is based on the computers capacity for process monitoring, data acquisition, data storage, and error-detection.

Some typical, on-line data analysis functions include the acquisition measurements, verification of data, filtering, unit conversion, calculations of indirect measurements, differential integration calculations of estimated variables, data reduction, tabulation of results, graphical presentation of results, process stimulation and storage of data.

Bioreactor Sildom control panel_meitu_1